top of page

Intelligent Design of Autonomous Materials

The Group on Intelligent Design of Autonomous Materials welcomes competitive and enthusiastic applicants to conduct cutting-edge research at HKUST in Hong Kong. Interested persons with theoretical or computational background in Applied Mathematics, Physics, Biophysics, Materials Science, Mechanical Engineering, or Chemical Engineering are encouraged to send enquiries to Rui's email address at

ruizhang@ust.hk

art_work_defect.png

Our Research

Our society is currently facing unprecedented challenges in health, energy, and the environment, which have created a strong demand in new materials which are renewable, multifunctional, light-weight, and can interact with human more safely and intelligently. Soft materials are a promising candidate for this purpose. The overarching goal of the our Group is to harness soft materials, such as active matter, liquid crystals, polymers, colloids, metamaterials, and their composites to design next-generation, autonomous materials and soft machines.

Specifically, our group will employ traditional and emerging computational methods, including machine learning, to propose novel soft materials with nontraditional functionalities, features, and dynamics. Examples include active fluids with tailorable flow patterns, multiphase systems sensitive to specific stimuli, and origami materials with novel shape-changing behaviors in response to external fields. These new soft materials are promising for soft robotics, wearable devices, space exploration, 4D printing, energy harvesting, smart buildings, sensing and diagnosis, and etc.

 

Our group strives to borrow the wisdom from biological systems and design synthetic materials and machines that are low-cost, green, biocompatible, and intelligent. Our research is multidisciplinary, covering Physics, Biology, Chemistry, Materials Science, Chemical and Mechanical Engineering.

Design of Shape Morphing of Liquid Crystal Elastomers Through Pre-shaping Methods

Xinyu Wang, Qin Xu and Rui Zhang#

Mol. Syst. Des. Eng. in press (2025)

Responsive shape-changing materials with driven and spontaneous transitions have wide applications in biological systems, soft robots, artificial muscles, and consumer products. Among different shape-morphing materials, liquid crystal elastomers (LCEs) have recently emerged as a promising type of material for their ability to undergo large, reversible strains and to generate programmable deformation modes in response to external stimuli, such as temperature change, light stimulation, or humidity change. Existing research on LCE deformations usually assume a flat or an undeformed shape as the initial configuration, which morphs into a targeted nontrivial shape when external stimuli are applied. Here, we use continuum simulation to explore the deformation of pre-shaped LCE strips to analyze how the initial shape geometry can be used to tune the shape-morphing behaviors of LCEs. We first validate our simulation method by successfully reproducing the deformations of a thin strip of LCE with two well-studied director fields, i.e., a splay–bend director and a twist director along the thickness direction, respectively. We next consider nontrivial combinations of different pre-shapes and different director fields to study the thermo-mechanical response of an LCE strip. Specifically, we pre-bend an otherwise flat LCE strip along its short axis, long axis, and an off-axis direction, and study its deformations assuming a twist director field. We find that pre-bending along the short axis can facilitate the LCE strip to transition from a helicoid into a spiral ribbon, and an off-axis pre-bent LCE strip can form a tubule more easily than its flat counterpart. For a pre-twist LCE strip, we find that its deformed shape preserves the handedness of the initial twist. For a constrained pre-bent LCE strip, it can spontaneously break the symmetry of the initial shape by bending toward one side. Taken together, we have systematically studied the interplay between the initial shape and the director field of an LCE strip, and our work implies that pre-deformation can be an effective parameter to control the shape-morphing behaviors of LCEs.

The Intelligent Design of Autonomous Materials Group is proudly supported by the Research Grants Council of Hong Kong, Guangdong Natural Science Foundation, and ASPIRE League.

The Hong Kong University of Science and Technology

(852) 2358 5734

bottom of page